

Absolute Maximum Ratings(Note 5)	
Supply Voltage (V_{CC})	-0.5 V to +4.6 V
DC Input Voltage (V_{l})	-0.5 V to +4.6 V
Output Voltage (V_{0})	
Outputs 3-STATED	-0.5 V to +4.6 V
Outputs Active (Note 6)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Input Diode Current (I_{K}) $\mathrm{V}_{1}<0 \mathrm{~V}$	$-50 \mathrm{~mA}$
DC Output Diode Current (lok)	
$\mathrm{V}_{\mathrm{O}}<0 \mathrm{~V}$	-50 mA
$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{cc}}$	+50 mA
DC Output Source/Sink Current	
($\mathrm{l}_{\mathrm{OH}} / \mathrm{l}_{\mathrm{OL}}$)	$\pm 50 \mathrm{~mA}$
DC V CC or Ground Current per	
Supply Pin (ICC or Ground)	$\pm 100 \mathrm{~mA}$
Storage Temperature Range ($\mathrm{T}_{\text {STG }}$)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions (Note 7)

Power Supply	
Operating	1.4 V to 3.6 V
Input Voltage	-0.3 V to 3.6 V
Output Voltage $\left(\mathrm{V}_{\mathrm{O}}\right)$	0 V to V_{CC}
Output in Active States	0.0 V to 3.6 V
Output in 3 -STATE	
Output Current in $\mathrm{I}_{\mathrm{OH}} / \mathrm{l}_{\mathrm{OL}}$	$\pm 24 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	$\pm 18 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	$\pm 6 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 2.3 V	$\pm 2 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.6 V	
Free Air Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Free Air Operating Temperature (T_{A})
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Minimum Input Edge Rate ($\Delta \mathrm{t} / \Delta \mathrm{V}$)

$$
\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V} \text { to } 2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}
$$

$10 \mathrm{~ns} / \mathrm{V}$
Note 5: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical
Characteristics tables are not guaranteed at the Absolute Maximum Rat-
ings. The Recommended Operating Conditions tables will define the condi-
tions for actual device operation.
Note 6: I_{O} Absolute Maximum Rating must be observed.
Note 7: Floating or unused pin (inputs or I/O's) must be held HIGH or LOW.

DC Electrical Characteristics

Symbol	Parameter	Conditions	V_{cc} (V)	Min	Max	Units
V_{IH}	HIGH Level Input Voltage		$\begin{gathered} \hline 2.7-3.6 \\ 2.3-2.7 \\ 1.65-2.3 \\ 1.4-1.6 \end{gathered}$	2.0 1.6 $0.65 \times \mathrm{V}_{\mathrm{CC}}$ $0.65 \times \mathrm{V}_{\mathrm{CC}}$		V
V_{IL}	LOW Level Input Voltage		$\begin{gathered} 2.7-3.6 \\ 2.3-2.7 \\ 1.65-2.3 \\ 1.4-1.6 \end{gathered}$		0.8 0.7 $0.35 \times V_{C C}$ $0.35 \times V_{C C}$	V
$\overline{\mathrm{V}} \mathrm{OH}$	HIGH Level Output Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-18 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \end{aligned}$	$\begin{gathered} \hline 2.7-3.6 \\ 2.7 \\ 3.0 \\ 3.0 \end{gathered}$	$\begin{array}{c\|} \hline \mathrm{V}_{\mathrm{CC}}-0.2 \\ 2.2 \\ 2.4 \\ 2.2 \end{array}$		V
		$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-6 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-18 \mathrm{~mA} \end{aligned}$	$\begin{gathered} 2.3-2.7 \\ 2.3 \\ 2.3 \\ 2.3 \end{gathered}$	$\begin{array}{c\|} \hline \mathrm{V}_{\mathrm{CC}}-0.2 \\ 2.0 \\ 1.8 \\ 1.7 \end{array}$		
		$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-6 \mathrm{~mA} \end{aligned}$	$\begin{gathered} 1.65-2.3 \\ 1.65 \end{gathered}$	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}-0.2 \\ 1.25 \\ \hline \end{gathered}$		
		$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \end{aligned}$	$\begin{gathered} \hline 1.4-1.6 \\ 1.4 \end{gathered}$	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}-0.2 \\ 1.05 \end{gathered}$		

DC Electrical Characteristics (Continued)

Symbol	Parameter	Conditions	$\begin{aligned} & V_{\mathrm{cc}} \\ & (\mathrm{~V}) \end{aligned}$	Min	Max	Units
$\mathrm{V}_{\text {OL }}$	LOW Level Output Voltage	$\mathrm{l}_{\mathrm{OL}}=100 \mu \mathrm{~A}$	2.7-3.6		0.2	V
		$\mathrm{l}_{\mathrm{LL}}=12 \mathrm{~mA}$	2.7		0.4	
		$\mathrm{l} \mathrm{L}=18 \mathrm{~mA}$	3.0		0.4	
		$\mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$	3.0		0.55	
		$\mathrm{l}_{\text {OL }}=100 \mu \mathrm{~A}$	2.3-2.7		0.2	
		$\mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}$	2.3		0.4	
		$\mathrm{IOL}^{\text {}}=18 \mathrm{~mA}$	2.3		0.6	
		$\mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}$	1.65-2.3		0.2	
		$\mathrm{l}_{\mathrm{LL}}=6 \mathrm{~mA}$	1.65		0.3	
		$\mathrm{l}_{\mathrm{OL}}=100 \mu \mathrm{~A}$	1.4-1.6		0.2	
		$\mathrm{l}_{\mathrm{OL}}=2 \mathrm{~mA}$	1.4		0.35	
I_{1}	Input Leakage Current	$0 \mathrm{~V} \leq \mathrm{V}_{1} \leq 3.6 \mathrm{~V}$	1.4-3.6		± 5.0	$\mu \mathrm{A}$
Ioz	3-STATE Output Leakage	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 3.6 \mathrm{~V}$	1.4-3.6		± 10.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}}$				
IofF	Power Off Leakage Current	$0 \mathrm{~V} \leq\left(\mathrm{V}_{1}, \mathrm{~V}_{\mathrm{O}}\right) \leq 3.6 \mathrm{~V}$	0		10.0	$\mu \mathrm{A}$
${ }_{\text {IC }}$	Quiescent Supply Current	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND	1.4-3.6		20.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}} \leq\left(\mathrm{V}_{1}, \mathrm{~V}_{\mathrm{O}}\right) \leq 3.6 \mathrm{~V}$ (Note 8)	1.4-3.6		± 20.0	
$\Delta_{\text {l }}$	Increase in I CC per Input	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$	2.7-3.6		750	$\mu \mathrm{A}$

Note 8: Outputs disabled or 3-STATE only.

Symbol	Parameter	Conditions	V_{CC} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Figure Number
				Min	Max		
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	3.3 ± 0.3	250		MHz	
			2.5 ± 0.2	200			
			1.8 ± 0.15	100			
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	1.5 ± 0.1	80.0			
$\overline{t_{\text {PHL }}}$ $t_{\text {PLH }}$	Propagation Delay	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	3.3 ± 0.3	0.6	2.9	ns	Figures 1, 2
			2.5 ± 0.2	0.8	3.5		
			1.8 ± 0.15	1.5	7.0		
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	1.5 ± 0.1	1.0	14.0		$\begin{gathered} \text { Figures } \\ 7,8 \end{gathered}$
$\overline{t_{\text {PHL }}}$ $t_{\text {PLH }}$	Propagation Delay Clock-to-Bus	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	3.3 ± 0.3	0.6	3.5	ns	Figures 1, 2
			2.5 ± 0.2	0.8	4.4		
			1.8 ± 0.15	1.5	8.8		
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	1.5 ± 0.1	1.0	17.6		$\begin{gathered} \text { Figures } \\ 7,8 \end{gathered}$
t_{PHL} $t_{\text {PLH }}$	Propagation Delay LE-to-Bus	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	3.3 ± 0.3	0.6	3.8	ns	Figures 1, 2
			2.5 ± 0.2	0.8	4.9		
			1.8 ± 0.15	1.5	9.8		
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	1.5 ± 0.1	1.0	19.6		$\begin{gathered} \hline \text { Figures } \\ 7,8 \end{gathered}$
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	Output Enable Time	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	3.3 ± 0.3	0.6	3.8	ns	Figures 1, 3, 4
			2.5 ± 0.2	0.8	4.9		
			1.8 ± 0.15	1.5	9.8		
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	1.5 ± 0.1	1.0	19.6		Figures $7,9,10$
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLZ}} \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Output Disable Time	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	3.3 ± 0.3	0.8	3.7	ns	Figures$1,3,4$
			2.5 ± 0.2	0.8	4.2		
			1.8 ± 0.15	0.8	7.6		
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	1.5 ± 0.1	1.0	15.2		Figures $7,9,10$
t_{s}	Setup Time	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	3.3 ± 0.3	1.5		ns	Figures 1, 6
			2.5 ± 0.2	1.5			
			1.8 ± 0.15	2.5			
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	1.5 ± 0.1	3.0			$\begin{gathered} \text { Figures } \\ 6,7 \end{gathered}$
t_{H}	Hold Time	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	3.3 ± 0.3	1.0		ns	Figures 1, 6
			2.5 ± 0.2	1.0			
			1.8 ± 0.15	1.0			
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	1.5 ± 0.1	2.0			$\begin{gathered} \text { Figures } \\ 6,7 \end{gathered}$
t_{W}	Pulse Width	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	3.3 ± 0.3	1.5		ns	Figures 1, 5
			2.5 ± 0.2	1.5			
			1.8 ± 0.15	4.0			
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	1.5 ± 0.1	4.0			$\begin{aligned} & \text { Figures } \\ & 5.7 \end{aligned}$
toshL tosth	Output-to-Output Skew (Note 10)	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	3.3 ± 0.3		0.5	ns	
			2.5 ± 0.2		0.5		
			1.8 ± 0.15		0.75		
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	1.5 ± 0.1		1.5		

Note 9: For $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, add approximately 300ps to the AC maximum specification.
Note 10: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW ($\mathrm{t}_{\mathrm{OSHL}}$) or LOW-to-HIGH ($\mathrm{t}_{\mathrm{OSLH}}$).

Dynamic Switching Characteristics

Symbol	Parameter	Conditions	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{cc}} \\ & (\mathrm{~V}) \end{aligned}$	$\begin{array}{\|c\|} \hline \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \hline \text { Typical } \\ \hline \end{array}$	Units
$\overline{\mathrm{V}_{\text {OLP }}}$	Quiet Output Dynamic Peak $\mathrm{V}_{\text {OL }}$	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\text {IL }}=0 \mathrm{~V}$	1.8	0.25	
			2.5	0.6	v
			3.3	0.8	
$\overline{\mathrm{V} \text { OLV }}$	Quiet Output Dynamic Valley $\mathrm{V}_{\text {OL }}$	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	1.8	-0.25	
			2.5	-0.6	v
			3.3	-0.8	
$\mathrm{V}_{\text {OHV }}$	Quiet Output Dynamic Valley V_{OH}	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	1.8	1.5	
			2.5	1.9	v
			3.3	2.2	

Capacitance

Symbol	Conditions	$\mathbf{T}_{\mathbf{A}}=+\mathbf{2 5}{ }^{\circ} \mathbf{C}$	Units	
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}, 2.5 \mathrm{~V}$, or $3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	6.0	pF
$\mathrm{C}_{I / \mathrm{O}}$	Output Capacitance	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$, or $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}, 2.5 \mathrm{~V}$ or 3.3 V	7.0	pF
C_{PD}	Power Dissipation Capacitance	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{f}=10 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}, 2.5 \mathrm{~V}$ or 3.3 V	20.0	pF

AC Loading and Waveforms ($\mathrm{V}_{\mathrm{Cc}} 3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ to $1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$)

TEST	SWITCH
$\mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PHL}}$	Open
$\mathrm{t}_{\mathrm{PZL}}, \mathrm{t}_{\mathrm{PLZ}}$	6 V at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V} ;$
	$\mathrm{V}_{\mathrm{CC}} \times 2$ at $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V} ; 1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$
$\mathrm{t}_{\mathrm{PZH}}, \mathrm{t}_{\mathrm{PHZ}}$	GND

FIGURE 1. AC Test Circuit

FIGURE 2. Waveform for Inverting and Non-inverting Functions

FIGURE 3. 3-STATE Output High Enable and Disable Times for Low Voltage Logic

FIGURE 4. 3-STATE Output Low Enable and Disable Times for Low Voltage Logic

FIGURE 5. Propagation Delay, Pulse Width and $t_{\text {rec }}$ Waveforms

FIGURE 6. Setup Time, Hold Time and Recovery Time for Low Voltage Logic

Symbol	$\mathrm{V}_{\mathbf{C c}}$		
	$\mathbf{3 . 3 V} \pm \mathbf{0 . 3 V}$	$\mathbf{2 . 5 V} \pm \mathbf{0 . 2 V}$	$\mathbf{1 . 8} \pm \mathbf{0 . 1 5 V}$
V_{mi}	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{mo}}$	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{X}}$	$\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{Y}}$	$\mathrm{V}_{\mathrm{OH}}-0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$

AC Loading and Waveforms ($\mathrm{V}_{\mathrm{Cc}} 1.5 \mathrm{~V} \pm 0.1 \mathrm{~V}$)

FIGURE 8. Waveform for Inverting and Non-inverting Functions

FIGURE 9. 3-STATE Output High Enable and Disable Times for Low Voltage Logic

FIGURE 10. 3-STATE Output Low Enable and Disable Times for Low Voltage Logic

Symbol	$\mathrm{V}_{\mathbf{C C}}$
	$\mathbf{1 . 5 v} \pm \mathbf{0 . 1} \mathrm{V}$
V_{mi}	$\mathrm{V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{mo}}$	$\mathrm{V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{X}}$	$\mathrm{V}_{\mathrm{OL}}+0.1 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{Y}}$	$\mathrm{V}_{\mathrm{OH}}-0.1 \mathrm{~V}$

